

Ministério da Educação Universidade Tecnológica Federal do Paraná Câmpus Pato Branco

Professor(a):	Disciplina: Cálculo 1
Aluno(a):	_ Data: / /

Lista de Exercícios 3 - Limites

1. Encontre as assíntotas verticais e horizontais das funções abaixo:

$$(a) \ y = \frac{1}{x - 1}$$

$$(c) \ \ y = \frac{x+4}{x+3}$$

(b)
$$y = \frac{2x^2 + x - 1}{x^2 - 1}$$

$$(d) \ y = \frac{x}{x^2 - 1}$$

2. Se $4x - 9 \le f(x) \le x^2 - 4x + 7$ para $x \ge 0$, encontre $\lim_{x \to 4} f(x)$.

3. Se $2x \le g(x) \le x^4 - x^2 + 2$ para todo x, encontre $\lim_{x \to 1} g(x)$.

4. Seja
$$f(x) = \begin{cases} 3-x & se \ x < -2 \\ \frac{x}{2} & se \ x > -2 \end{cases}$$
.

(a) Determine $\lim_{x\to -2^+} f(x)$ e $\lim_{x\to -2^-} f(x)$.

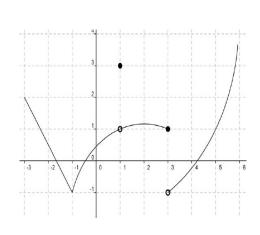
(b) Existe $\lim_{x\to -2} f(x)$? Se existe, f é contínua neste ponto?

(c) Determine $\lim_{x \to -4^+} f(x)$ e $\lim_{x \to -4^-} f(x)$.

(d) Existe $\lim_{x\to -4} f(x)$? Se existe, f é contínua neste ponto?

5. Seja
$$f(x) = \begin{cases} \sqrt{1 - x^2} & \text{se } 0 \le x \le 1 \\ 1 & \text{se } 1 < x < 2 \\ 2 & \text{se } x = 2 \end{cases}$$

(a) Em que pontos c existe $\lim_{x\to c} f(x)$?


(b) Em quais pontos existe apenas o limite à esquerda?

(c) Em quais pontos existe apenas o limite â direita?

6. Responda:

(a) Do gráfico de f mostrado abaixo, diga os números nos quais f é descontínua e explique por quê.

(b) Para cada um dos números indicados na parte (a), determine se f é contínua à direita ou à esquerda, ou nenhum deles.

7. Mostre que cada uma das funções abaixo é contínua em um dado número a.

(a)
$$f(x) = x^2 + \sqrt{7-x}$$
, $a = 4$

(b)
$$f(x) = (x + 2x^3)^4$$
, $a = -1$

(c)
$$f(x) = \frac{2x - 3x^2}{1 + x^3}$$
, $a = 1$

8. Esboce o gráfico de uma função que é contínua em toda parte, exceto em x=3 e é contínua à esquerda em x=3.

9. Esboce o gráfico de uma função que tenha descontinuidade de salto em x=2 e uma descontinuidade removível em x=4, mas seja contínua no restante.

10. Determine o valor de a para que as seguinte funções sejam contínuas no ponto indicado:

(a)
$$f(x) = \begin{cases} \frac{x^2 - 5x + 6}{x - 2} & \text{se } x \neq 2 \\ a & \text{se } x = 2 \end{cases}$$
, ponto $x = 2$.

(b)
$$f(x) = \begin{cases} \frac{\sqrt{x} - 2}{x - 4} & \text{se } x > 4 \\ 3x + a & \text{se } x \le 4 \end{cases}$$
, ponto $x = 4$.

(c)
$$f(x) = \begin{cases} \frac{\sqrt{x+2} - \sqrt{2}}{x} & \text{se } x > 0\\ 3x^2 - 4x + a & \text{se } x \le 0 \end{cases}$$
, ponto $x = 0$.

$$(d) \ f(x) = \begin{cases} ax^2 + 2x & \text{se } x < 2 \\ x^3 - ax & \text{se } x \ge 2 \end{cases}, \quad \text{ponto } x = 2.$$

11. Encontre os valores de a e b que tornam f abaixo contínua em toda parte.

$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2} & \text{se } x < 2\\ ax^2 - bx + 3 & \text{se } 2 < x < 3\\ 2x - a + b & \text{se } x \ge 3 \end{cases}$$

12. Explique por que a função é descontínua no número a dado. Esboce o gráfico da função.

(a)
$$f(x) = \ln|x - 2|$$
; $a = 2$

(b)
$$f(x) = \begin{cases} \frac{1}{x-1} & se \ x \neq 1 \\ 2 & se \ x = 1 \end{cases}$$
; $a = 1$

(c)
$$f(x) = \begin{cases} e^x & se \ x < 0 \\ x^2 & se \ x \ge 0 \end{cases}$$
; $a = 0$

(d)
$$f(x) = \begin{cases} \frac{x^2 - x}{x^2 - 1} & \text{se } x \neq 1 \\ 1 & \text{se } x = 1 \end{cases}$$
; $a = 1$

(e)
$$f(x) = \begin{cases} \cos x & \text{se } x < 0 \\ 0 & \text{se } x = 0 \\ 1 - x^2 & \text{se } x > 0 \end{cases}$$